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Motivation

► LiDAR based localization is typically based on two steps:

 Establishing associations between a scan acquired by a LiDAR 
sensor mounted on the ego-vehicle and a map.

 Minimizing the residuals based on a loss function, which
matches the error distribution.
 Quadratic loss/Least squares in case of normally distributed
errors.

► Problem: Wrong associations (outliers) cause deviations
from the distribution function
 can't be modelled and result in a wrong estimate of the 

system state.

► New approach: Localization based on robust maximum 
consensus criterion.
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Localization using Maximum Consensus: Basic principle

► Rough localization is given (e.g. by means of GNSS) 

► Exact localization based on the registration of two point clouds using 
maximum consensus 

 Sparse ‘car sensor’ point cloud from a Velodyne VLP-16 scanner

 Dense, high resolution ‘map’ point cloud obtained using a Riegl MMS

► 2D position: space of possible positions is discretized and the consensus 
set is computed for every cell

► Heading: car sensor scan is rotated around the up-axis in discrete angular 
steps and 2D ‘position‘ accumulator is calculated 

Velodyne scan Map point cloud Inlier
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Video: Localization using Maximum Consensus

Velodyne scan Map point cloud Inlier
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Idea / Goal

► Goal: Transfer accumulator into a grid of probabilities

► Define confidence levels (Protection Level (PL))

► Vision: Integrity system raising alerts, if PL intersects with 
the Alert Limit (AL) given by a map and car sensor scans for 
dynamic objects.

Map point cloud projected to the 

xy-plane (left) and buffered ”Alert 

Limit map” (right).
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Overview Methodology

► Goals:

 Maximum consensus based localization and

 Protection level estimation using synthetic LiDAR range images
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Overview data sets

► Map point clouds of the three investigated areas with points of ground, parked cars and vegetation being removed: 

► Data set of „Nordstadt“ area is publicly available: „LUCOOP: Leibniz University Cooperative Perception and Urban 
Navigation Dataset” [2]

Nordstadt Haltenhoffstraße Highway (A2/B6)

1
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Scan images

► Measured scan images:

 Rows: Layer  Velodyne VLP-16: 16; Hesai PandarXT-32: 32

 Columns: Azimuth (bins = 360° x 1/horizontal_resolution Rotating LiDARs with a horizontal FOV of 360°)

• Velodyne VLP-16: 0.2°  1800 measurements per layer and rotation

• Hesai PandarXT-32: 0.18°  2000 measurements per layer and rotation

 Pixel value = Measured distance

► Predicted scan images:

 Requirements to predict scan images (for arbitrary poses): Representation of the environment  here: triangular 
mesh, and the LiDAR model 

 Relevant technical specifications of the LiDAR model: Horizontal and vertical field of view (FOV) and resolutions

3
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Rendering of scan images

► Generation of triangular meshes, which enable fast image rendering using GPUs

 Generation from 3D LiDAR point clouds using VDBFusion library [4]

• Does not require any assumptions about the size of the area  well suited 
for the large RIEGL MMS point clouds

• Combines TSDF with the VDB data structure [5]  practical meshing 
approach, which is fast and flexible with respect to the input point clouds

 Parameters: Voxel size: 0.05m-0.1m; Truncation distance: 0.12m-0.25m

► GPU based rendering of predicted scan images using OpenGL 

 The rendering requires: Triangular mesh, LiDAR model specifications, LiDAR 
pose consisting of (x, y, z, ϕ, θ, ψ)

► Points of ground, vegetation and parked cars are removed in the 3D map point 
cloud using labels from manual annotation or labels from a classification [1]

 Consequently, these classes are also not represented in the triangular mesh 
and in the synthetic scan image.

Am kleinen Felde (Nordstadt)

Haltenhoffstraße
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Haltenhoffstraße (Hesai PandarXT-32)

Prediction

Measurement
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Maximum consensus localization

► Localization w.r.t three degrees of freedom  xy-position in the plane and heading angle θ 

► Count of inliers as objective function  w.r.t measured and expected ranges in observation space (before: point matches 
defined in terms of Euclidean distance in 3D object space)

► 2D search range of xy-positions is discretized into a regular grid and for each position within the grid:

 Predicted scan image is rendered

 Calculate the deviations between measured and predicted scan images
 image of equal size containing the differences as the pixel values. 
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Maximum consensus localization

► To include the heading angle θ in the search:

 Predicted scan image is shifted horizontally 
 difference image is calculated for each shift

 Discretization of the heading search range depending on the 
horizontal resolution of the LiDAR sensor (here: = 0.18° / 
0.2°)  can not reach a step size below the horizontal 
resolution (= shift by one column)

 Here: smallest step size set to three columns  angular 
resolution of 0.54° (Hesai PandarXT-32) and 0.6° (Velodyne 
VLP-16)

► Resulting objective function:

Search spaces in the xy-plane for the nine 
heading angles within the heading search 
range from −2.16° to +2.16°.
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Beam model definition and parameter estimation [6]

Measurement noise Unexpected obstacles

Random measurement Maximum range response
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Beam model definition and parameter estimation

► Beam model parameters ϴ (σhit,λshort, whit, wshort, wrandom, wmax) are estimated from the measured scan data [6]

 Goal of the adjustment process: Identify a set of beam model parameters ϴ that maximizes the likelihood 
p(Z|X,m,ϴ) between actual and expected measurements  iterative process

Z: set of real measurements, X: set of ground truth poses, m: map ( here: mesh)

 Expected distances are determined using ray-tracing

► In this work, for each type of environment, a set of intrinsic beam model parameters is estimated using the ground truth 
trajectory obtained by the RIEGL MMS and all available measurement epochs
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Estimation of discrete probability distribution and definition of a 
protection level

► For every pixel of each predicted scan image p(z|x,m) is drawn from the beam model with z: measured range, x: 
candidate poses, m: map

► The discrete probability distribution over all candidate poses p(x|Z,m) is estimated as:

► The protection level is defined by the grid cells with a probability p>1-10-7.

Maximum consensus accumulator Probability grid based on beam model

with
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Experiments – Maximum consensus based localization

► Robustness:

 Maximum consensus localization: exhaustive search  supposed to provide globally optimal localization solutions

 Sought: Portion of epochs, in which the localization fundamentally fails  deviation of solution from the ground truth 
beyond a margin explainable by inaccuracies in the pipeline: margin = 0.2 m

 For comparison: point-to-plane ICPs initialized in a similar grid from -1 m to +1 m around the ground truth position 
 sought: portion of epochs, in which not all of the ICPs converge to the ground truth 

► Accuracy: 

 Maximum consensus localization using a grid with an increased resolution of 2 cm

 Calculation of mean absolute deviation (MAD) between the pose of the highest count and the ground truth
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Experiments - Estimation of discrete probability distribution and 
protection level

► Pose with the highest probability within the search range is considered as localization solution  similar evaluation as 
maximum consensus localization w.r.t. the ground truth 

► Test of estimated protection level w.r.t the requirement that it contains the true pose 

► Protection level test:

 Requirement that the PL contains the true pose is not fulfilled for a significant portion in all three test areas 

 PL does not cover the true pose: state of misleading information (in terms of Stanford diagram)

 Driving scenarios are not extremely challenging and no exceptional events occur
 expectation: portion of successful PL checks at or close to 100% (no states of misleading information)
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Experiments - Estimation of discrete probability distribution and 
protection level

► Maximum consensus localization only shows a little deviation from the true pose  no fundamental fail, but PL does not 
cover the ground truth pose. 

► Reasons for probability distributions with a too high confidence on a certain localization solution: 

 Estimation of the probability grids assumes independent measurements and does not consider existing correlations.

 Beam model does not fit measurements  only one beam model is estimated for a drive over multiple kilometers. 
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Conclusion and outlook

► We proposed a novel localization pipeline based on synthetic LiDAR range images combining 

 a robust localization approach using the maximum consensus criterion and 

 an estimation of probability distributions using a beam model for range sensors. 

► The maximum consensus based localization approach provides robust and accurate results, however, still 
with some space for improvement 

 Future research: more robust and accurate approach based on point-to-plane adjustment.

► Estimated discrete probability distributions are too optimistic 

 Challenge: Finding a beam model (or in general loss function), which is in accordance to the error distribution of our 
measurements to correctly estimate the probability distribution for the vehicle pose (in highly dynamic setting even 
more difficult)

 Future research: Application of the adaptive loss function introduced by Barron [7,8] for the estimation of probability 
distributions  a scaling parameter α, which determines the shape of the loss function, is constantly estimated and 
updated. Depending on the outlier ratio a more robust shape is selected.
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Thank you for your attention. 

Questions? Comments?
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Backup
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LUCOOP: Leibniz University Cooperative Perception and Urban 
Navigation Dataset

► https://data.uni-hannover.de/dataset/lucoop-leibniz-university-cooperative-perception-and-urban-navigation-dataset

► LUCOOP contributors: Yunshuang Yuan, Qianqian Zou, Dominik Ernst, Benjamin Tennstedt, Jingyao Su, Rozhin Moftizadeh, Jeldrik Axmann, 
Hamza Alkhatib, Claus Brenner, Steffen Schön

https://data.uni-hannover.de/dataset/lucoop-leibniz-university-cooperative-perception-and-urban-navigation-dataset

